3.45 \(\int \frac {a+b \sin ^{-1}(c x)}{x^4 (d-c^2 d x^2)^2} \, dx\)

Optimal. Leaf size=259 \[ -\frac {5 i c^3 \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{d^2}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}+\frac {5 c^4 x \left (a+b \sin ^{-1}(c x)\right )}{2 d^2 \left (1-c^2 x^2\right )}+\frac {5 i b c^3 \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{2 d^2}-\frac {5 i b c^3 \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{2 d^2}-\frac {b c}{6 d^2 x^2 \sqrt {1-c^2 x^2}}-\frac {b c^3}{3 d^2 \sqrt {1-c^2 x^2}}-\frac {13 b c^3 \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{6 d^2} \]

[Out]

1/3*(-a-b*arcsin(c*x))/d^2/x^3/(-c^2*x^2+1)-5/3*c^2*(a+b*arcsin(c*x))/d^2/x/(-c^2*x^2+1)+5/2*c^4*x*(a+b*arcsin
(c*x))/d^2/(-c^2*x^2+1)-5*I*c^3*(a+b*arcsin(c*x))*arctan(I*c*x+(-c^2*x^2+1)^(1/2))/d^2-13/6*b*c^3*arctanh((-c^
2*x^2+1)^(1/2))/d^2+5/2*I*b*c^3*polylog(2,-I*(I*c*x+(-c^2*x^2+1)^(1/2)))/d^2-5/2*I*b*c^3*polylog(2,I*(I*c*x+(-
c^2*x^2+1)^(1/2)))/d^2-1/3*b*c^3/d^2/(-c^2*x^2+1)^(1/2)-1/6*b*c/d^2/x^2/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 285, normalized size of antiderivative = 1.10, number of steps used = 19, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {4701, 4655, 4657, 4181, 2279, 2391, 261, 266, 51, 63, 208} \[ \frac {5 i b c^3 \text {PolyLog}\left (2,-i e^{i \sin ^{-1}(c x)}\right )}{2 d^2}-\frac {5 i b c^3 \text {PolyLog}\left (2,i e^{i \sin ^{-1}(c x)}\right )}{2 d^2}+\frac {5 c^4 x \left (a+b \sin ^{-1}(c x)\right )}{2 d^2 \left (1-c^2 x^2\right )}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}-\frac {5 i c^3 \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{d^2}-\frac {5 b c^3}{6 d^2 \sqrt {1-c^2 x^2}}-\frac {b c \sqrt {1-c^2 x^2}}{2 d^2 x^2}+\frac {b c}{3 d^2 x^2 \sqrt {1-c^2 x^2}}-\frac {13 b c^3 \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{6 d^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])/(x^4*(d - c^2*d*x^2)^2),x]

[Out]

(-5*b*c^3)/(6*d^2*Sqrt[1 - c^2*x^2]) + (b*c)/(3*d^2*x^2*Sqrt[1 - c^2*x^2]) - (b*c*Sqrt[1 - c^2*x^2])/(2*d^2*x^
2) - (a + b*ArcSin[c*x])/(3*d^2*x^3*(1 - c^2*x^2)) - (5*c^2*(a + b*ArcSin[c*x]))/(3*d^2*x*(1 - c^2*x^2)) + (5*
c^4*x*(a + b*ArcSin[c*x]))/(2*d^2*(1 - c^2*x^2)) - ((5*I)*c^3*(a + b*ArcSin[c*x])*ArcTan[E^(I*ArcSin[c*x])])/d
^2 - (13*b*c^3*ArcTanh[Sqrt[1 - c^2*x^2]])/(6*d^2) + (((5*I)/2)*b*c^3*PolyLog[2, (-I)*E^(I*ArcSin[c*x])])/d^2
- (((5*I)/2)*b*c^3*PolyLog[2, I*E^(I*ArcSin[c*x])])/d^2

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4181

Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*ArcTanh[E
^(I*k*Pi)*E^(I*(e + f*x))])/f, x] + (-Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))],
 x], x] + Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e,
f}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 4655

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(x*(d + e*x^2)^(p
+ 1)*(a + b*ArcSin[c*x])^n)/(2*d*(p + 1)), x] + (Dist[(2*p + 3)/(2*d*(p + 1)), Int[(d + e*x^2)^(p + 1)*(a + b*
ArcSin[c*x])^n, x], x] + Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*(p + 1)*(1 - c^2*x^2)^FracPart[p
]), Int[x*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2
*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 4657

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/(c*d), Subst[Int[(a +
b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 4701

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(d*f*(m + 1)), x] + (Dist[(c^2*(m + 2*p + 3))/(f^2*(m
 + 1)), Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^F
racPart[p])/(f*(m + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x
])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[m, -1] && Inte
gerQ[m]

Rubi steps

\begin {align*} \int \frac {a+b \sin ^{-1}(c x)}{x^4 \left (d-c^2 d x^2\right )^2} \, dx &=-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}+\frac {1}{3} \left (5 c^2\right ) \int \frac {a+b \sin ^{-1}(c x)}{x^2 \left (d-c^2 d x^2\right )^2} \, dx+\frac {(b c) \int \frac {1}{x^3 \left (1-c^2 x^2\right )^{3/2}} \, dx}{3 d^2}\\ &=-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}+\left (5 c^4\right ) \int \frac {a+b \sin ^{-1}(c x)}{\left (d-c^2 d x^2\right )^2} \, dx+\frac {(b c) \operatorname {Subst}\left (\int \frac {1}{x^2 \left (1-c^2 x\right )^{3/2}} \, dx,x,x^2\right )}{6 d^2}+\frac {\left (5 b c^3\right ) \int \frac {1}{x \left (1-c^2 x^2\right )^{3/2}} \, dx}{3 d^2}\\ &=\frac {b c}{3 d^2 x^2 \sqrt {1-c^2 x^2}}-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}+\frac {5 c^4 x \left (a+b \sin ^{-1}(c x)\right )}{2 d^2 \left (1-c^2 x^2\right )}+\frac {(b c) \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {1-c^2 x}} \, dx,x,x^2\right )}{2 d^2}+\frac {\left (5 b c^3\right ) \operatorname {Subst}\left (\int \frac {1}{x \left (1-c^2 x\right )^{3/2}} \, dx,x,x^2\right )}{6 d^2}-\frac {\left (5 b c^5\right ) \int \frac {x}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{2 d^2}+\frac {\left (5 c^4\right ) \int \frac {a+b \sin ^{-1}(c x)}{d-c^2 d x^2} \, dx}{2 d}\\ &=-\frac {5 b c^3}{6 d^2 \sqrt {1-c^2 x^2}}+\frac {b c}{3 d^2 x^2 \sqrt {1-c^2 x^2}}-\frac {b c \sqrt {1-c^2 x^2}}{2 d^2 x^2}-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}+\frac {5 c^4 x \left (a+b \sin ^{-1}(c x)\right )}{2 d^2 \left (1-c^2 x^2\right )}+\frac {\left (5 c^3\right ) \operatorname {Subst}\left (\int (a+b x) \sec (x) \, dx,x,\sin ^{-1}(c x)\right )}{2 d^2}+\frac {\left (b c^3\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-c^2 x}} \, dx,x,x^2\right )}{4 d^2}+\frac {\left (5 b c^3\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {1-c^2 x}} \, dx,x,x^2\right )}{6 d^2}\\ &=-\frac {5 b c^3}{6 d^2 \sqrt {1-c^2 x^2}}+\frac {b c}{3 d^2 x^2 \sqrt {1-c^2 x^2}}-\frac {b c \sqrt {1-c^2 x^2}}{2 d^2 x^2}-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}+\frac {5 c^4 x \left (a+b \sin ^{-1}(c x)\right )}{2 d^2 \left (1-c^2 x^2\right )}-\frac {5 i c^3 \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{d^2}-\frac {(b c) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{c^2}-\frac {x^2}{c^2}} \, dx,x,\sqrt {1-c^2 x^2}\right )}{2 d^2}-\frac {(5 b c) \operatorname {Subst}\left (\int \frac {1}{\frac {1}{c^2}-\frac {x^2}{c^2}} \, dx,x,\sqrt {1-c^2 x^2}\right )}{3 d^2}-\frac {\left (5 b c^3\right ) \operatorname {Subst}\left (\int \log \left (1-i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{2 d^2}+\frac {\left (5 b c^3\right ) \operatorname {Subst}\left (\int \log \left (1+i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{2 d^2}\\ &=-\frac {5 b c^3}{6 d^2 \sqrt {1-c^2 x^2}}+\frac {b c}{3 d^2 x^2 \sqrt {1-c^2 x^2}}-\frac {b c \sqrt {1-c^2 x^2}}{2 d^2 x^2}-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}+\frac {5 c^4 x \left (a+b \sin ^{-1}(c x)\right )}{2 d^2 \left (1-c^2 x^2\right )}-\frac {5 i c^3 \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{d^2}-\frac {13 b c^3 \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{6 d^2}+\frac {\left (5 i b c^3\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{2 d^2}-\frac {\left (5 i b c^3\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{2 d^2}\\ &=-\frac {5 b c^3}{6 d^2 \sqrt {1-c^2 x^2}}+\frac {b c}{3 d^2 x^2 \sqrt {1-c^2 x^2}}-\frac {b c \sqrt {1-c^2 x^2}}{2 d^2 x^2}-\frac {a+b \sin ^{-1}(c x)}{3 d^2 x^3 \left (1-c^2 x^2\right )}-\frac {5 c^2 \left (a+b \sin ^{-1}(c x)\right )}{3 d^2 x \left (1-c^2 x^2\right )}+\frac {5 c^4 x \left (a+b \sin ^{-1}(c x)\right )}{2 d^2 \left (1-c^2 x^2\right )}-\frac {5 i c^3 \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{d^2}-\frac {13 b c^3 \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )}{6 d^2}+\frac {5 i b c^3 \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{2 d^2}-\frac {5 i b c^3 \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{2 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.90, size = 426, normalized size = 1.64 \[ -\frac {15 a c^3 \log (1-c x)-15 a c^3 \log (c x+1)+\frac {24 a c^2}{x}+\frac {6 a c^4 x}{c^2 x^2-1}+\frac {4 a}{x^3}-30 i b c^3 \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )+30 i b c^3 \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )+\frac {3 b c^3 \sin ^{-1}(c x)}{c x-1}+\frac {3 b c^3 \sin ^{-1}(c x)}{c x+1}+15 i \pi b c^3 \sin ^{-1}(c x)-30 b c^3 \sin ^{-1}(c x) \log \left (1-i e^{i \sin ^{-1}(c x)}\right )-15 \pi b c^3 \log \left (1-i e^{i \sin ^{-1}(c x)}\right )+30 b c^3 \sin ^{-1}(c x) \log \left (1+i e^{i \sin ^{-1}(c x)}\right )-15 \pi b c^3 \log \left (1+i e^{i \sin ^{-1}(c x)}\right )+15 \pi b c^3 \log \left (\sin \left (\frac {1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right )\right )+15 \pi b c^3 \log \left (-\cos \left (\frac {1}{4} \left (2 \sin ^{-1}(c x)+\pi \right )\right )\right )+\frac {2 b c \sqrt {1-c^2 x^2}}{x^2}+\frac {24 b c^2 \sin ^{-1}(c x)}{x}-\frac {3 b c^3 \sqrt {1-c^2 x^2}}{c x-1}+\frac {3 b c^3 \sqrt {1-c^2 x^2}}{c x+1}+26 b c^3 \tanh ^{-1}\left (\sqrt {1-c^2 x^2}\right )+\frac {4 b \sin ^{-1}(c x)}{x^3}}{12 d^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSin[c*x])/(x^4*(d - c^2*d*x^2)^2),x]

[Out]

-1/12*((4*a)/x^3 + (24*a*c^2)/x + (2*b*c*Sqrt[1 - c^2*x^2])/x^2 - (3*b*c^3*Sqrt[1 - c^2*x^2])/(-1 + c*x) + (3*
b*c^3*Sqrt[1 - c^2*x^2])/(1 + c*x) + (6*a*c^4*x)/(-1 + c^2*x^2) + (15*I)*b*c^3*Pi*ArcSin[c*x] + (4*b*ArcSin[c*
x])/x^3 + (24*b*c^2*ArcSin[c*x])/x + (3*b*c^3*ArcSin[c*x])/(-1 + c*x) + (3*b*c^3*ArcSin[c*x])/(1 + c*x) + 26*b
*c^3*ArcTanh[Sqrt[1 - c^2*x^2]] - 15*b*c^3*Pi*Log[1 - I*E^(I*ArcSin[c*x])] - 30*b*c^3*ArcSin[c*x]*Log[1 - I*E^
(I*ArcSin[c*x])] - 15*b*c^3*Pi*Log[1 + I*E^(I*ArcSin[c*x])] + 30*b*c^3*ArcSin[c*x]*Log[1 + I*E^(I*ArcSin[c*x])
] + 15*a*c^3*Log[1 - c*x] - 15*a*c^3*Log[1 + c*x] + 15*b*c^3*Pi*Log[-Cos[(Pi + 2*ArcSin[c*x])/4]] + 15*b*c^3*P
i*Log[Sin[(Pi + 2*ArcSin[c*x])/4]] - (30*I)*b*c^3*PolyLog[2, (-I)*E^(I*ArcSin[c*x])] + (30*I)*b*c^3*PolyLog[2,
 I*E^(I*ArcSin[c*x])])/d^2

________________________________________________________________________________________

fricas [F]  time = 0.60, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \arcsin \left (c x\right ) + a}{c^{4} d^{2} x^{8} - 2 \, c^{2} d^{2} x^{6} + d^{2} x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^4/(-c^2*d*x^2+d)^2,x, algorithm="fricas")

[Out]

integral((b*arcsin(c*x) + a)/(c^4*d^2*x^8 - 2*c^2*d^2*x^6 + d^2*x^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \arcsin \left (c x\right ) + a}{{\left (c^{2} d x^{2} - d\right )}^{2} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^4/(-c^2*d*x^2+d)^2,x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)/((c^2*d*x^2 - d)^2*x^4), x)

________________________________________________________________________________________

maple [A]  time = 0.33, size = 426, normalized size = 1.64 \[ -\frac {c^{3} a}{4 d^{2} \left (c x +1\right )}+\frac {5 c^{3} a \ln \left (c x +1\right )}{4 d^{2}}-\frac {a}{3 d^{2} x^{3}}-\frac {2 c^{2} a}{d^{2} x}-\frac {c^{3} a}{4 d^{2} \left (c x -1\right )}-\frac {5 c^{3} a \ln \left (c x -1\right )}{4 d^{2}}-\frac {5 c^{4} b \arcsin \left (c x \right ) x}{2 d^{2} \left (c^{2} x^{2}-1\right )}+\frac {c^{3} b \sqrt {-c^{2} x^{2}+1}}{3 d^{2} \left (c^{2} x^{2}-1\right )}+\frac {5 c^{2} b \arcsin \left (c x \right )}{3 d^{2} x \left (c^{2} x^{2}-1\right )}+\frac {c b \sqrt {-c^{2} x^{2}+1}}{6 d^{2} x^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \arcsin \left (c x \right )}{3 d^{2} x^{3} \left (c^{2} x^{2}-1\right )}-\frac {13 c^{3} b \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{6 d^{2}}+\frac {13 c^{3} b \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-1\right )}{6 d^{2}}-\frac {5 c^{3} b \arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2 d^{2}}+\frac {5 c^{3} b \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2 d^{2}}-\frac {5 i c^{3} b \dilog \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2 d^{2}}+\frac {5 i c^{3} b \dilog \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{2 d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))/x^4/(-c^2*d*x^2+d)^2,x)

[Out]

-1/4*c^3*a/d^2/(c*x+1)+5/4*c^3*a/d^2*ln(c*x+1)-1/3*a/d^2/x^3-2*c^2*a/d^2/x-1/4*c^3*a/d^2/(c*x-1)-5/4*c^3*a/d^2
*ln(c*x-1)-5/2*c^4*b/d^2/(c^2*x^2-1)*arcsin(c*x)*x+1/3*c^3*b/d^2/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)+5/3*c^2*b/d^2/
x/(c^2*x^2-1)*arcsin(c*x)+1/6*c*b/d^2/x^2/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)+1/3*b/d^2/x^3/(c^2*x^2-1)*arcsin(c*x)
-13/6*c^3*b/d^2*ln(1+I*c*x+(-c^2*x^2+1)^(1/2))+13/6*c^3*b/d^2*ln(I*c*x+(-c^2*x^2+1)^(1/2)-1)-5/2*c^3*b/d^2*arc
sin(c*x)*ln(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))+5/2*c^3*b/d^2*arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))-5/2*I
*c^3*b/d^2*dilog(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))+5/2*I*c^3*b/d^2*dilog(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{12} \, {\left (\frac {15 \, c^{3} \log \left (c x + 1\right )}{d^{2}} - \frac {15 \, c^{3} \log \left (c x - 1\right )}{d^{2}} - \frac {2 \, {\left (15 \, c^{4} x^{4} - 10 \, c^{2} x^{2} - 2\right )}}{c^{2} d^{2} x^{5} - d^{2} x^{3}}\right )} a + \frac {{\left (15 \, {\left (c^{5} x^{5} - c^{3} x^{3}\right )} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right ) \log \left (c x + 1\right ) - 15 \, {\left (c^{5} x^{5} - c^{3} x^{3}\right )} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right ) \log \left (-c x + 1\right ) - 2 \, {\left (15 \, c^{4} x^{4} - 10 \, c^{2} x^{2} - 2\right )} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right ) - {\left (c^{2} d^{2} x^{5} - d^{2} x^{3}\right )} \int \frac {{\left (30 \, c^{5} x^{4} - 20 \, c^{3} x^{2} - 15 \, {\left (c^{6} x^{5} - c^{4} x^{3}\right )} \log \left (c x + 1\right ) + 15 \, {\left (c^{6} x^{5} - c^{4} x^{3}\right )} \log \left (-c x + 1\right ) - 4 \, c\right )} \sqrt {c x + 1} \sqrt {-c x + 1}}{c^{4} d^{2} x^{7} - 2 \, c^{2} d^{2} x^{5} + d^{2} x^{3}}\,{d x}\right )} b}{12 \, {\left (c^{2} d^{2} x^{5} - d^{2} x^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x^4/(-c^2*d*x^2+d)^2,x, algorithm="maxima")

[Out]

1/12*(15*c^3*log(c*x + 1)/d^2 - 15*c^3*log(c*x - 1)/d^2 - 2*(15*c^4*x^4 - 10*c^2*x^2 - 2)/(c^2*d^2*x^5 - d^2*x
^3))*a + 1/12*(15*(c^5*x^5 - c^3*x^3)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))*log(c*x + 1) - 15*(c^5*x^5 -
c^3*x^3)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))*log(-c*x + 1) - 2*(15*c^4*x^4 - 10*c^2*x^2 - 2)*arctan2(c*
x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + 12*(c^2*d^2*x^5 - d^2*x^3)*integrate(-1/12*(30*c^5*x^4 - 20*c^3*x^2 - 15*(c
^6*x^5 - c^4*x^3)*log(c*x + 1) + 15*(c^6*x^5 - c^4*x^3)*log(-c*x + 1) - 4*c)*sqrt(c*x + 1)*sqrt(-c*x + 1)/(c^4
*d^2*x^7 - 2*c^2*d^2*x^5 + d^2*x^3), x))*b/(c^2*d^2*x^5 - d^2*x^3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{x^4\,{\left (d-c^2\,d\,x^2\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))/(x^4*(d - c^2*d*x^2)^2),x)

[Out]

int((a + b*asin(c*x))/(x^4*(d - c^2*d*x^2)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {a}{c^{4} x^{8} - 2 c^{2} x^{6} + x^{4}}\, dx + \int \frac {b \operatorname {asin}{\left (c x \right )}}{c^{4} x^{8} - 2 c^{2} x^{6} + x^{4}}\, dx}{d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))/x**4/(-c**2*d*x**2+d)**2,x)

[Out]

(Integral(a/(c**4*x**8 - 2*c**2*x**6 + x**4), x) + Integral(b*asin(c*x)/(c**4*x**8 - 2*c**2*x**6 + x**4), x))/
d**2

________________________________________________________________________________________